下面是小编为大家整理的2023年有理数乘方教案6篇(范文推荐),供大家参考。
作为一名人民教师,有必要进行细致的教案准备工作,借助教案可以更好地组织教学活动。来参考自己需要的教案吧!这次漂亮的小编为亲带来了6篇《有理数的乘方教案》,希望能够对困扰您的问题有一定的启迪作用。
有理数的乘方教案 篇一
一、知识与技能
(1)正确理解乘方、幂、指数、底数等概念。
(2)会进行有理数乘方的运算。
二、过程与方法
通过对乘方意义的理解,培养学生观察比较、分析、归纳概括的能力,渗透转化思想。
三、情感态度与价值观
培养探索精神,体验小组交流、合作学习的重要性。
教学重、难点与关键
1、重点:正确理解乘方的意义,掌握乘方运算法则。
2、难点:正确理解乘方、底数、指数的概念,并合理运算。
3、关键:弄清底数、指数、幂等概念,注意区别-an与(-a)n的意义。
四、课堂引入
1、几个不等于零的有理数相乘,积的符号是怎样确定的?
几个不等于零的有理数相乘,积的符号由负因数的个数确定,当负因数的个数为奇数时,积为负;当负因数的个数为偶数时,积为正。
2、正方形的边长为2,则面积是多少?棱长为2的正方体,则体积为多少?
五、新授
边长为a的正方形的面积是aa,棱长为a的正方体的体积是aaa.
aa简记作a2,读作a的平方(或二次方)。
aaa简记作a3,读作a的立方(或三次方)。
一般地,几个相同的因数a相乘,记作an.即aaa. 这种求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
在an中,a叫底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂。
有理数的乘方教案 篇二
教学目标
1?理解有理数乘方的概念,掌握有理数乘方的运算;
2?培养学生的观察、比较、分析、归纳、概括能力,以及学生的探索精神;
3?渗透分类讨论思想?
教学重点和难点
重点:有理数乘方的运算?
难点:有理数乘方运算的符号法则?
课堂教学过程设计
一、从学生原有认知结构提出问题
在小学我们已经学习过aa,记作a2,读作a的平方(或a的二次方);aaa作a3,读作a的立方(或a的三次方);那么,aaaa可以记作什么?读作什么?aaaaa呢?
在小学对于字母a我们只能取正数?进入中学后,我们学习了有理数,那么a还可以取哪些数呢?请举例说明?
二讲授新课
1?求n个相同因数的积的运算叫做乘方?
2?乘方的结果叫做幂,相同的因数叫做底数,相同因数的个数叫做指数?
一般地,在an中,a取任意有理数,n取正整数?
应当注意,乘方是一种运算,幂是乘方运算的结果?当an看作a的n次方的结果时,也可以读作a的n次幂。
3、我们知道,乘方和加、减、乘、除一样,也是一种运算, 就是表示n个a相乘,所以可以利用有理数的乘法运算来进行有理数乘方的运算?
例1 计算:
(1)2, 2, 2,24; (2)-2, 2, 3,(-2)4;
(3)0,02,03,04?
教师指出:2就是21,指数1通常不写?让三个学生在黑板上计算?
引导学生观察、比较、分析这三组计算题中,底数、指数和幂之间有什么关系?
(1)模向观察
正数的任何次幂都是正数;负数的奇次幂是负数,偶次幂是正数;零的任何次幂都是零?
(2)纵向观察
互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等?
(3)任何一个数的偶次幂都是什么数?
任何一个数的偶次幂都是非负数?
你能把上述的结论用数学符号语言表示吗?
当a0时,an0(n是正整数);
当a
当a=0时,an=0(n是正整数)?
(以上为有理数乘方运算的符号法则)
a2n=(-a)2n(n是正整数);
=-(-a)2n-1(n是正整数);
a2n0(a是有理数,n是正整数)?
例2 计算:
(1)(-3)2,(-3)3,[-(-3)]5;
(2)-32,-33,-(-3)5;
(3) , ?
让三个学生在黑板上计算?
教师引导学生纵向观察第(1)题和第(2)题的形式和计算结果,让学生自己体会到,(-a)n的底数是-a,表示n个(-a)相乘,-an是an的相反数,这是(-a)n与-an的区别?
教师引导学生横向观察第(3)题的形式和计算结果,让学生自己体会到,写分数的乘方时要加括号,不然就是另一种运算了?
课堂练习
计算:
(1) , , ,- , ;
(2)(-1)20**,322,-42(-4)2,-23(-2)3;
(3)(-1)n-1?
三、小结
让学生回忆,做出小结:
1?乘方的有关概念?2?乘方的符号法则?3?括号的作用?
四、作业
1?计算下列各式:
(-3)2;(-2)3;(-4)4; ;-0.12;
-(-3)3;3(-2)3;-6(-3)3;- (-4)2(-1)5?
2?填表:
3?a=-3,b=-5,c=4时,求下列各代数式的值:
(1)(a+b)2; (2)a2-b2+c2; (3)(-a+b-c)2; (4)a2+2ab+b2?
4?当a是负数时,判断下列各式是否成立?
(1)a2=(-a)2; (2)a3=(-a)3; (3)a2= ; (4)a3= 。
5*?平方得9的数有几个?是什么?有没有平方得-9的有理数?为什么?
6*?若(a+1)2+|b-2|=0,求a20**b3的值?
课堂教学设计说明
1?数学教学的重要目的是发展智力,提高能力,而发展智力、提高能力的核心是发展学生的思维能力?教学中,既要注重罗辑推理能力的培养,又重注重观察、归纳等合情推理能力的培养?因此,根据教学内容和学生的认知水平,我们再一次把培养学生的观察、归纳等能力列入了教学目标?
2?数学发展的历史告诉我们,数学的发展是从三个方面前进的:第一是不断的推广;第二是不断的精确化;第三是不断的逼近?在引入新时,要尽可能使学生的学习方式与数池家的研究方式类似,不断进行推广。a2是由计算正方形面积得到的,a3是由计算正方体的体积得到的,而a4,a5,,an是学生通过类推得到的?
推广后的结果是还要有严密的定义,让学生从更高的观点看自己推广的结果?一般来说,一个概念或一个公式形成后,要对其字母的意义、相互的关系、应用的范围逐项分析?在an中,a取任意有理数,n取正整数的说明还是必要的,要培养学生这种良好的学习习惯?
3?把学生做巩固性练习和总结运算规律放在一起进行,其效果就远远超出了巩固性练习的初衷?
我们知道,学生必须通过自己的探索才能学会数学和会学数学,与其说学习数学,不如说体验数学、做数学?始终给学生以创造发挥的机会,让学生自己在学习中扮演主动角色,教师不代替学生思考,把重点放在教学情境的设计上?例如,通过实际计算,让学生自己休会到负数与分数的乘方要加括号?
4?有理数的乘方中反映出来的数学思想主要是分类讨论思想,在例1中,精心设计了三组计算题,引导学生从底数大于零、等于零、小于零分析、归纳、概括出有理数乘方的符号法则,使学生在潜移默化中形成分类讨论思想?符号语言的使用,优化了表示分类讨论思想的形式,尤其是负数的奇次幂和偶次幂是大分类中的小分类,用符号语言就更加明显?在练习中让学生完成问题(-1)n-1,进一步巩固了分类讨论思想,使这种思想得以落实?
《有理数的乘方》优秀教案 篇三
教学目标
1、理解有理数乘方的概念,掌握有理数乘方的运算;
2、培养学生的观察、比较、分析、归纳、概括能力,以及学生的探索精神;
3、渗透分类讨论思想?
教学重点和难点
重点:有理数乘方的运算?
难点:有理数乘方运算的符号法则?
课堂教学过程设计
一、从学生原有认知结构提出问题
在小学我们已经学习过aa,记作a2,读作a的平方(或a的二次方);aaa作a3,读作a的立方(或a的三次方);那么,aaaa可以记作什么?读作什么?aaaaa呢?
在小学对于字母a我们只能取正数?进入中学后,我们学习了有理数,那么a还可以取哪些数呢?请举例说明?
二讲授新课
1、求n个相同因数的积的运算叫做乘方?
2、乘方的结果叫做幂,相同的因数叫做底数,相同因数的个数叫做指数?
一般地,在an中,a取任意有理数,n取正整数?
应当注意,乘方是一种运算,幂是乘方运算的结果?当an看作a的n次方的结果时,也可以读作a的n次幂。
3、我们知道,乘方和加、减、乘、除一样,也是一种运算, 就是表示n个a相乘,所以可以利用有理数的乘法运算来进行有理数乘方的运算?
例1 计算:
(1)2, 2, 2,24; (2)-2, 2, 3,(-2)4;
(3)0,02,03,04?
教师指出:2就是21,指数1通常不写?让三个学生在黑板上计算?
引导学生观察、比较、分析这三组计算题中,底数、指数和幂之间有什么关系?
(1)模向观察
正数的任何次幂都是正数;负数的奇次幂是负数,偶次幂是正数;零的任何次幂都是零?
(2)纵向观察
互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等?
(3)任何一个数的偶次幂都是什么数?
任何一个数的偶次幂都是非负数?
你能把上述的结论用数学符号语言表示吗?
当a0时,an0(n是正整数);
当a
当a=0时,an=0(n是正整数)?
(以上为有理数乘方运算的符号法则)
a2n=(-a)2n(n是正整数);
=-(-a)2n-1(n是正整数);
a2n0(a是有理数,n是正整数)?
例2 计算:
(1)(-3)2,(-3)3,[-(-3)]5;
(2)-32,-33,-(-3)5;
(3) , ?
让三个学生在黑板上计算?
教师引导学生纵向观察第(1)题和第(2)题的形式和计算结果,让学生自己体会到,(-a)n的底数是-a,表示n个(-a)相乘,-an是an的相反数,这是(-a)n与-an的区别?
教师引导学生横向观察第(3)题的形式和计算结果,让学生自己体会到,写分数的乘方时要加括号,不然就是另一种运算了?
课堂练习
计算:
(1) , , ,- , ;
(2)(-1)2001,322,-42(-4)2,-23(-2)3;
(3)(-1)n-1?
三、小结
让学生回忆,做出小结:
1、乘方的有关概念?
2、乘方的符号法则?3?括号的作用?
四、作业
1、计算下列各式:
(-3)2;(-2)3;(-4)4; ;-0.12;
-(-3)3;3(-2)3;-6(-3)3;- (-4)2(-1)5?
2、填表:
3、a=-3,b=-5,c=4时,求下列各代数式的值:
(1)(a+b)2; (2)a2-b2+c2; (3)(-a+b-c)2; (4)a2+2ab+b2?
4、当a是负数时,判断下列各式是否成立?
(1)a2=(-a)2; (2)a3=(-a)3; (3)a2= ; (4)a3= 。
5、平方得9的数有几个?是什么?有没有平方得-9的有理数?为什么?
6、若(a+1)2+|b-2|=0,求a2000b3的值?
课堂教学设计说明
1、数学教学的重要目的是发展智力,提高能力,而发展智力、提高能力的核心是发展学生的思维能力?教学中,既要注重罗辑推理能力的培养,又重注重观察、归纳等合情推理能力的培养?因此,根据教学内容和学生的`认知水平,我们再一次把培养学生的观察、归纳等能力列入了教学目标?
2、数学发展的历史告诉我们,数学的发展是从三个方面前进的:第一是不断的推广;第二是不断的精确化;第三是不断的逼近?在引入新时,要尽可能使学生的学习方式与数池家的研究方式类似,不断进行推广。a2是由计算正方形面积得到的,a3是由计算正方体的体积得到的,而a4,a5,,an是学生通过类推得到的?
推广后的结果是还要有严密的定义,让学生从更高的观点看自己推广的结果?一般来说,一个概念或一个公式形成后,要对其字母的意义、相互的关系、应用的范围逐项分析?在an中,a取任意有理数,n取正整数的说明还是必要的,要培养学生这种良好的学习习惯?
3、把学生做巩固性练习和总结运算规律放在一起进行,其效果就远远超出了巩固性练习的初衷?
我们知道,学生必须通过自己的探索才能学会数学和会学数学,与其说学习数学,不如说体验数学、做数学?始终给学生以创造发挥的机会,让学生自己在学习中扮演主动角色,教师不代替学生思考,把重点放在教学情境的设计上?例如,通过实际计算,让学生自己休会到负数与分数的乘方要加括号?
4、有理数的乘方中反映出来的数学思想主要是分类讨论思想,在例1中,精心设计了三组计算题,引导学生从底数大于零、等于零、小于零分析、归纳、概括出有理数乘方的符号法则,使学生在潜移默化中形成分类讨论思想?符号语言的使用,优化了表示分类讨论思想的形式,尤其是负数的奇次幂和偶次幂是大分类中的小分类,用符号语言就更加明显?在练习中让学生完成问题(-1)n-1,进一步巩固了分类讨论思想,使这种思想得以落实?
有理数的乘方教案 篇四
一、 学什么
1、 知道乘方运算与乘法运算的关系,会进行有理数的乘方运算。
2、 知道底数、指数和幂的概念,会求有理数的正整数指数幂。
二、 怎样学
归纳概念
n个a相乘aaa= ,读作: 。 其中n表示因数的个数。
求 相同因数的积的运算叫作乘方。乘方运算的结果叫幂。
例1:计算
(1)26 (2)73 (3)(3)4 (4)(4)3
例2:(1) ( )5 (2)( )3 (3)( )4
【想一想】1.(1)10,(1)7,( )4,( )5是正数还是负数?
2、负数的幂的符号如何确定?
思考题:1、(a2)2+(b+3)2=0,求a和b的值。
2、计算 ( 2)20 09 +(2)20**
3、在右 边的33的方格中,现在以两种不同的方式往方格内放硬币,一种每格放100枚,三 学怎样
1、某种细菌在培养过程中,细菌每半小时分裂一次(由分裂成两个),经过两个小时,这 种细菌由1个可分裂成( )
A 8个 B 16个 C 4个 D 32个
2、一根长1cm的绳子,第一次剪去一半。第 二次剪去剩下的一半,如此剪下去,第六次剪后剩下的绳子长度为( )
A ( )3m B ( )5m C( )6m D( )12 m
3、(3.4)3,(3.4)4,(3.4)5的从小到大的顺序是 。
4、计 算
(1)(3)3 (2)(0.8)2 (3)02004 (4 )12004
(5)104 (6)( )5 (7)-( )3 (8) 43
(9)32(3)3+(2)223 (10)-18(3)2
5、已知(a2)2+|b5|=0,求(a)3( b)2.
2.6有理数的乘方(第2课时)
一、学什么
会用科学计数法表示绝对值较大的数。
二、怎样学
定义:一般地,一个大于10的数可以写成 的形式,其中 ,n是正整数,这种记数法称为科学记数法。
例题教学
例1:1972年3月美国发射的先驱者10号,是人类发往太阳系外的第一艘人造太空探测器。截至20**年12月人们最后一次收到它发回的信号时,它已飞离地球1220000000 0km。用科学记数法表示这个距离。
例2:用科学记数法表示下列各数。
(1)10000000 (2) 57000000 (3) 123000 0000 00
例3.写出下列用科学记数法表示的数的原数。
2.31105 3.001104
1.28103 8.3456108
思考:比较大小
(1)9.2531010 与1.0021011
(2)7.84109与1.01101 0
学怎 样
1、用科学记数法表示314160000得 ( )
A.3.1416108 B. 3.1416109 C. 3.1416101 0 D. 3.1416104
2、稀土元素有独特的性能和广泛的应用,我国的稀土资源总储藏量约为1050000000吨,是全世界稀土资源最丰富的国家,将1050000000吨用科学记数法表示为( )
A.1.051010吨 B. 1.05109吨 C.1.051 08吨 D. 0.105101 0吨
3、人类的遗传物质是DNA,DNA是很 大的链,最短的22号染色体也长达30000000个核苷酸,3000000 0用科学记数法表示为 ( )
A.3108 B. 3107 C.3106 D. 0.3108
4、第五次全国人口普查结果表示:我国的总人口已达到13亿。请用科学记数法表示13亿为 。
5 。比较大小:
10.9 108 1.11010 ; 1.11108 9.99107 。
6、用科学记数法表示下列各数。
(1)32000 (2) -80000000 000 (3)2895.8 (4)- 389999900000000
《有理数的乘方》优秀教案 篇五
教学目标
1、知道乘方运算与乘法运算的关系,会进行有理数的乘方运算;
2、知道底数、指数和幂的概念,会求有理数的正整数指数幂;
3、会用科学记数法表示较大的数。
教学重点
1、有理数乘方的意义,求有理数的正整数指数幂;
2、用科学记数法表示较大的数。
教学难点
有理数乘方结果(幂)的符号的确定。
教学过程(教师)
问题引入
手工拉面是我国的传统面食。制作时,拉面师傅将一团和好的面,揉搓成1根长条后,手握两端用力拉长,然后将长条对折,再拉长,再对折(每次对折称为一扣),如此反复操作,连续拉扣若干次后便成了许多细细的面条。你能算出拉扣6次后共有多少根面条吗?
乘方的有关概念
试一试:
将一张报纸对折再对折……直到无法对折为止。你对折了多少次?请用算式表示你对折出来的报纸的层数。
你还能举出类似的实例吗?
有理数的乘方:同步练习
1、对于式子(-3)6与-36,下列说法中,正确的是()
A.它们的意义相同
B.它们的结果相同
C.它们的意义不同,结果相等
D.它们的意义不同,结果也不相等
2、下列叙述中:
①正数与它的绝对值互为相反数;
②非负数与它的绝对值的差为0;
③-1的立方与它的平方互为相反数;
④±1的倒数与它的平方相等。其中正确的个数有()
A.1B.2C.3D.4
有理数的乘方教案 篇六
一、学习目标
1.能确定有理数加、减、乘、除、乘方混合运算的顺序;
2.掌握含乘方的有理数的混合运算顺序,并掌握简便运算技巧;
3.偶次幂的非负性的应用。
二、知识回顾
1.在2+ ×(-6)这个式子中,存在着3种运算。
2.上面这个式子应该先算乘方、再算2 、最后加法。
三、新知讲解
1.偶次幂的非负性
若a是任意有理数,则(n为正整数),特别地,当n=1时,有。
2.有理数的混合运算顺序
①先乘方,再乘除,最后加减;
②同级运算,从左到右进行;
③如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
四、典例探究
1.有理数混合运算的顺序意识
【例1】计算:-1-3×(-2)3+(-6)÷
总结:做有理数的混合运算时,应注意以下运算顺序:
先乘方,再乘除,最后加减;
同级运算,从左到右进行;
如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
练1计算:-2×(-4)2+3-(-8)÷ +
2.有理数混合运算的转化意识
【例2】计算:(-2)3÷(-1 )2+3 ×(- )-0.25
总结:将算式中的除法转化为乘法,减法转化成加法,乘方转化为乘法,有时还要将带分数转化为假分数,小数转化为分数等,再进行计算。
练2计算:
3.有理数混合运算的符号意识
【例3】计算:-42-5×(-2)× -(-2)3
总结:
在有理数运算中,最容易出错的就是符号。
符号“-”即可以表示运算符号,即减号;又可以表示性质符号,即负号;还可以表示相反数。
要结合具体情况,弄清式中每个“-”的具体含义,养成先定符号,再算绝对值的良好习惯。
练3计算:
4.有理数混合运算的简算意识
【例4】计算:[1 -( )× ]÷5
总结:对于较复杂的一些计算题,应注意运用有理数的运算律和一定的运算技巧,从而找到简便运算的方法,以便有效地简化计算过程,提高运算速度和正确率。
练4计算:[2 -( )×2]÷
5.利用数的乘方找规律
【例5】瑞士中学教师巴尔末成功地从光谱数据……中得到巴尔末公式从而打开了光谱奥妙的大门。
题中的这组数据是按什么规律排列的?
请你按这种规律写出第七个数据。
总结:
这是一道规律探索题。规律探索题是指给出一列数字或一列式子或一组图形的前几个,通过归纳、猜想,推出一般性的结论。
探索规律的时候,要结合学过的知识仔细分析数据特点,乘方经常出现在有理数的规律题中,所以要从乘方的角度出发考虑。
练5
五、课后小测一、选择题
1.下列各式的结果中,最大的为( ).
A. B.
C. D.
2.32015的个位数字是( ).
A.3 B.9 C.7D.1
3.已知,那么(a+b)20**的值是( ).
A.-1 B.1 C.-32015 D.32015
二、填空题
4.a与b互为相反数,c与d互为倒数,x的绝对值为2,则x2+(a+b)20**+(-cd)20**=________.
三、解答题
5.计算:
(1) ;
(2) .
6.计算:
(1) ;
(2) .
7.计算:
(1) ;
(2) .
8.计算:
(1) ;
(2) .
9.已知与互为相反数,求:
(1) ;(2) .
典例探究答案:
【例1】【解析】原式=-1-3×(-8)+(-6)÷
=-1-(-24)+(-54)
=-1+24-54
=-31
练1【解析】原式=-2×16+3-(-8)÷ + =-32+3-(-32)+ =3
【例2】【解析】原式=(-2)3÷(- )2+ ×(- )-
=-8÷ +(- )-
=-8× +(- )-
=-
练2【解析】原式=9×( )-16×(-2)+ × = +32+2=
【例3】【解析】原式=-16+1-(-8)
=-16+1+8
=-7
练3【解析】原式=-4-(-27)×1-(-1)
=-4+27+1
=24
【例4】【解析】原式=[ -( )×(-64)]÷5
=[ -( )]÷5
=( -20)×
= × -20×
= -4=-3
练4【解析】原式=[ -( )]÷
=( - )×8
=19-2- +3
=
【例5】【解析】(1)观察这组数据,发现分子都是某一个数的平方,分别为32,42,52,62……分母和分子相差4,由此发现排列的规律。即:第n个数可以表示为。
(2)第七个数据为。
练5【解析】n+1/n+2=(n+1)2/n+3
课后小测答案:
一、选择题
1.C
2.C
3.A
二、填空题
4.3
三、解答题
5.(1)原式=-16-16-1-1=-34;
(2)原式= =-30.
6.(1)-27;(2)31.
7.(1)原式=16×(-4)+5=-64+5=-59;
(2)原式= =0.
8.(1)原式=-64-16-9×( )=-64-16+7=-73;
(2)原式= .
9.解:由题意,得。
又因为,,
所以,,得a=2,b=-1.
所以(1) ;
(2) .
读书破万卷下笔如有神,以上就是为大家带来的6篇《有理数的乘方教案》,希望对您有一些参考价值,更多范文样本、模板格式尽在。